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1.Introduction and preliminaries
The weakly contractive mappings on Hilbert spaces was defined byAlber and Guerre-Delabriere as
follows:
Definition 1.1 [2] “A mapping f : X —X is said to be a weakly contractive mapping if d(fx, fy)
<d(x, ¥) — ¢(d(x, y)) for each X, y € X and ¢ :[0,00) —[0,00) is a continuous and non-decreasing
function such that ¢(t) =0 if and only if t =0.”
Theorem 1.2 [9] “Let (X,d)be a complete metric space and f : X—X be a weakly contractive
mapping. Then f has a unique fixed point.”
Mustafa and Sims defined G-metric spaces as a generalization of metric space.
Definition 1.3 [8] “Let G: X x X x X — R" be a function on a non-empty X satisfying

(G-1) G(x,y,2)=0ifx=y=12,

(G-2) 0<G(x, x,y)forallx,y EXwithxzy,

(G-3) G(x,x,y)<G(x,y,z)forallx,y,zEXwithz=#y,

(G-4) G(x,v,2z)=G(x,2zY)=Gly, z, X) =... (symmetry in all three variables),

(G-5) G(x,vy,2)<G(x,a,a)+G(a,vy,z) forall x,y, z, a € X, (rectangle inequality).

The function G is called a generalized metric or more specifically, a G-metric on Xand the pair (X,
G) is called a G-metric space.”
Zhang and Song defined generalized ¢ — weak contractive condition as:
Definition 1.4 [10] “Two mappings T, S : X—X are called generalized ¢-weak contractive if there
exists a lower semi-continuous function ¢ : [0,00) —[0,00) with @(t) = 0 for t = 0 and ¢(t) > 0 for all
t > 0 such that

d(Tx, Sy) < N(x, y) — o(N(x, y))for each x,y € X,
where N(x, y) = max{ d(x, y).d(x, Tx), d(y, Sy).; (d(x,Sy) + d(y, Tx)).”

Theorem 1.5 [10] “Let (X,d)be a complete metric space and T, S : X— X be generalized ¢-weak
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contractive mappings, where ¢ : [0,0) —[0,0) is a lower semi-continuous function with ¢(t) = 0
for t = 0 and ¢(t) > 0 for all t > 0. Then thereexists a unique fixed point ue X such that u = Tu =
Su.”
The concept of altering distance function was introduced by Khan et. al as follows:
Definition 1.6[6] “The function y :[0,0) —[0,0) is called an altering distance function if the
following conditions hold:

(i) U is continuous and non-decreasing;

(ii) U (t)=0if and only if t = 0”.
Definition 1.7A partial order is a binary relation <over a set X which is reflexive, anti-symmetric
and transitive, i.e. which satisfies, for all p, g, r € X;

Q) p < p, (reflexivity)

(i) Ifp<qgandq<=<pthenp=q, (anti-symmetry)

(ili) If p<gandg<r then p <r. (transitivity)
A set with a partial order(X,<) is called a partially ordered set.
Definition 1.8 A triplet (X, G, =) is called a partially ordered G-metric space if (X,<) is a
partially ordered set and (X, G) is a G-metric space.
Definition 1.9[1] “Let (X, <) be a partially ordered set. A mapping f is called a dominating map on
X, if x <fx forall x eX.”
Definition 1.10[1] “Let (X, <) be a partially ordered set. A mapping f is called a weak annihilator
of g, if fgx<x x for all x €X.”
Definition 1.11[1] “A subset W of a partially ordered set X is said to be well ordered if every two
elements of W be comparable.”
Definition 1.12[4]“Let (X,d) be a metric space and f, g: X—X be two mappings. The pair (f, g) is
said to be compatible if and only if

1i_r>n d(fgx,,gfx,) = 0,whenever{x,} is a sequence in X such that

lim fx_ = 1511 gx,, = tfor some t €X.”
F1—* 0

n—*+ oo
Definition 1.13 [7]“Let(X, G)be a G-metric space and f, g : X—X be two mappings. The pair (f, g)

is said to be compatible if and only if li_r}n G(fgx,, fg=,, gfx, )=0, whenever {x,} is a sequence in
F1—* 00

X such that

lim fx,_ = li_I}n gx, =t, forsomet €X.”
n—oo

r— oo

Definition 1.14[5]“Let f and g be two self-mappings of a metric space(X, d). Then f and g are said
to be weakly compatible if for all x €X, the equality fx=gx implies fgx = gfx.”
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Definition 1.15[3] “Let(X, <) be a partially ordered set and f, g, h: X—X be mappings such that
f(X)< h(X) and g(X)<h(X). The ordered pair (f, g)is said to be partially weakly increasing with
respect to h if for all x eX,fx<gy, where
y Eh_l(fx).”
2. Main Result
Theorem 2.1 Let (X, <, G) be a partially ordered complete G-metric space. Letf, g, h,R, S, T : X
—X be the six mappings such that f(X) is contained in R(X), g(X) is contained in S(X), h(X) is
contained in T(X) and dominating maps f, g and h are weak annihilators of R, S and T respectively.
Suppose that for every X, y, z € X,

W(G(fx, gy, hz)) < y(M(x, y, 2)) — d(M(x, Y, 2)), @.1)

G(Tx, Ry, 5z),G(Ry, 5z, hz), G(Tx, gv, gv),
where M(x,y, z)= 4 G(Ry, hz hz), G(Sz, fx,fx), G(Tx, fx, fx),
G(Ry.gy, gv). G(Sz Sz hz)

and vy, ¢ : [0, ) —[0, ) are altering distance functions. Then, f, g, h, R, S and T have a unique
common fixed point in X provided G-metric space is symmetric and for a non-decreasing sequence
{z,} with %, = y,for all n,¥, — uimplies that
%, = uand one of the following:
(i) gorRand forTare continuous, (f, T) and (g, R) are compatible and (h, S)
is weakly compatible
or
(ii) h orSand forT are continuous, (f, T) and (h, S) are compatible and(g, R)
is weakly compatible
or
(iii) gorRand horS are continuous, (g, R) and (h, S) are compatible and(f, T)
is weakly compatible.
Proof. Let x; € X be an arbitrary point. Since f(X) is contained in R(X), we can have %€ X such
that fx; =Rx. Since g(X) is contained in S(X), we can choose x;€ X such that gx; =Sx. Also, as
h(X) is contained in T(X), we can choose x3€X such that hx,=Tx;. Repeating the same argument,
we can construct a sequence {t,} defined by
tan+1 = R¥an+1= Pan tan+2= SXan+2= 0%an+18ndtan 43 = TX3n 43 = W4,
for all n > 0.

Since f, g and h are dominating and f, g and h are weak annihilators of R, S and T, we obtain
Xp<fx; = Rxy <fRxy <3y < g%y
= Sx; SgSX, <X ¥p<xhx,

= Txg %thg < xg .
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By continuing this process, we get
X1<X2 <X3 < %X[{ <Xl{+1 < e
We will complete the proof in three steps.

Step I. We will prove that 1211 Gty ty.q. s )= 0.

—*oo
Define Gy = G(ttisss tisz). Suppose Gy = 0 for some k,. Then, ty = ty 41 =ty so.
Consequently, the sequence {ty} is constant, for k > k. Indeed, letk,= 3n.

Then tg,=t5, 11 =t3, .- and we obtain from (2.1),

Y(G(tan+1,tan+2.tan+3)) = W(G(f¥3,,0%30 £1,h %3, 42))

<y (M(¥3n, %30 +1.X30+2)) — O(M (X35, X35 +1.%3042)), (2.2)
where
M(X3n, X351, X3042)

G [T}:Hn, Rxg,4 1, X5y +:]r G[Rxanﬂr S¥3n+2 hxg, +2]r

G(Txy,, 8%3 41, EXgns1 )
= max G(Rxanﬂ: hx3n+2’hx3n+EJFG(SKHH+2’fxﬂn’fx!inj’ =
G(Txﬁn’fxﬁn ’ fxﬂn:]’

G(Rxa:ﬁ 1 8¥3n+1: 883y +1], G (Sx3n+2’ S¥gp 42, N3y, +zj

G(tanft3n+ 1r tEn +2j! G (t3n+1f tEIn +2’t3n +3jr
G(tan tansas tansals
max{ G(tansq, tanss tansa) Gltansa tansss tansa)s
G[tﬂn’tﬂn +1- tﬂn +1:]J'
G[tﬁn+1-'t?|n+ '.'-‘J't'FIn +'.'-‘:]J' G (t‘ﬁn+i‘!tﬁn +T!tﬁn -I-FI:]

G(tay tans1 tansa)s Gltaneys tansas tansalds
G(tan tans1s tansals

= maxq Gltanigtanso tanss)s Gltans tansro tans2)s
G(tan tans1s tansals

G[t3n+1ft3n+2’t3n+ Ejfﬁ[tﬂn +1’t3n +2’t3n +3]

= G(tans1tansa tansa).
Now from (2.2),
\V(G(t’ﬂn +1 tEn +2’t3n +3)) < W(G(tﬂn +1 tEn +2’t3n +3)) - ¢(G(t3n +1- tEn +2’t3n +3))1
and so, ¢(G(tan+1: tan+2: tan+3)) =0,thatis, t3549 = Tansn = tapss.
Similarly, if ky=3n+1ork, = 3n+2, one can easily obtain that

tan+z = a3 = tan4a@ndianss =ty =tag4s.

So the sequence{ty}is constant (for k > k;), and ty, is a common fixed point of R,S, T, f, g and h.
Let for all k ,Gy, = G(ty, tysq,trss) >0 (2.3)
We prove that foreach k =1, 2, 3,---
G(tr+1, tiesa tiesa) S M(Ey, Xper 1 ¥pesa)

= G(ty, trsq,tesa). (2.4)
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Let k = 3n. Since x4, <%, using (2.1) we obtain that
V(G(tan+1: tan+2: tan+3)) = W(G(f¥3,,0%3, +1,h%30 +2))
< Y(M(¥35,%30 41, %30 +2)) — O(M(X35, %35 +1, %30 +2)) (2.5)

where
M(¥*30, %30 41, X350 +2)
G [:Txﬂn’ RX3,41, X3y +:jr G[Rx3n+11' S¥3n+2, hxg, +zjr
G(Tx3,, 8%30 41, BXans1)

= max G(Rtgns 1, hxans, hXany ), G(SXan4 2, gy, fian),
G(Txﬂnffxﬂn 4 fxﬂnj’

G(Rxam 1 B¥3n+1: BR3p +1j, G (Sx3n+2’ SXapea Mg, +zj

G(tﬂn’ tEn +1- tEn +2]! G[t3n+1’ tEn +2’t3n +3 :],
G(tsn tansar tansals
= max G(t3n+11‘t3n +3: tap +3jr G(t3n+2!t3n +1’t3n+1:]!
G(t’ﬂn’ tan+1rtan +1j,
G[tﬁn+‘|!tﬁn +‘;‘!tFIr| +‘;‘]! G(tﬁn+i‘!tﬁn +‘;‘J't'FIr| +FI:]

G(tanstan+1s tan+2) G(tans 1 tag sz tansals
G(t3n1t3n+1’t3n+2]!

= max{ Gltzpsrstagsz tansa)sGltan tan+1s tansa),
G(tan tans 1 tansa)s

Gltans1.tansa:tansa)s Gltans 1, tansar tanss)

=max [G(tzn: tans1:tan+2) G(tan+1s tansz tan+a)
Since v is a non-decreasing function, we get
G(tzns1rtans2 tanss) SM(Xap X3n41.X3n22).
If forn>0, G(tags1s tan+2: tan+3) > G(tan, tan+1, tansz) >0, then
M(X3pn, X3n+1.X3n+2) = G(tan+1: tan+2: tan+3).
Therefore, (2.5) implies that

Y(G(tan+1:tans+2: tan+3)) SW(G(tan+1- tans+2:tan+3)) = (G(tan+1- tan+2- tan+3)),
which is only possible when G(tg, +1- t3n+2.t3n+3) = 0.This is a contradiction to (2.3).
Hence, G(tzn+1-tan+2:tans3) < G(tay, tan 41, t3n42) and
M (X3, %30 +1.%3n+2) = G(tan, tans1, tan+2).
Therefore, (2.4) is proved for k = 3n. Similarly, it can be shown that
G(tznsz-tansa tanse) SM(Xan+1,X¥3n42,X3n23)
= G(tzns1s tansa tanss)
and
G(tsn+3: tan+4.fan+5) SM(X3042,¥30 +3. %30 +4)

=G(tan+2: Tan+3sZan+s)
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Hence,{G(ty, ty+1,t+2)}is a non-decreasing sequence of non-negative real numbers.
Thus, there is an r > Osuch that
qui_IECG (e tis 1o tis =T (2.6)
Since
G(tk+1r trrar Tiers) S M(Fp, Xper1, ¥iesz)
< Gt s tiesa),
as k — oo, we get
qui_l}];ch (¥pes g1 Xpes )= 1. (2.7)
Letting n — oo in (2.5), using (2.6), (2.7) and the continuity of y and ¢, we get
y(r) < y(r) — ¢(r) < y(r) and hence ¢(r) = 0. This gives us
iﬂﬁtxerk+1ka+2:] =0, (2.8)
from our assumptions about ¢. Also, from Definition 1.3 part (G-3), we have
iﬂﬁ[xkka+1ka+2] =0. (2.9)
Step 11.We will show that {t, }is a G-Cauchy sequence in X.
We will show that for every € > 0,there exists a positive integer k such that for all
m, n >k, G(t, t,, t;) <e. Suppose the above statement is false. Then there exists
& > 0 for which we can find subsequences {ty, iy} and{t, )} of {t,} such that
n(k) > m(k) > k and
(@) m(k)=3t and n(k) =3t" +1,where t and t"are non-negative integers.
() G(tmag tag ta) = & (2.10)
(c) n(k) is the smallest number such that the condition (b) holds,
1.e.C(tm k) tni—1.taig-1) <& (2.11)
From rectangle inequality and (2.11), we have
G(tm (1) tat0r Ta(0) = Gtm ) tntio) -1, tatio-1) + Ctarg-1- Lt ta i)
<&+ Glty()-1: tak) (i) +1):
As k— oo and using (2.8) and (2.11), we have
iﬂﬁ(tm,:k},tn,:m, tat)) =& (2.12)
Again from rectangle inequality,
G(tm iy tarr taga+1) < G(tmm) tagoy tara) T G tagay tagr tag+1)
< G(tm ) taitor taio) + Clta: tatio+1r tat +2)
and
G(tm i tai tark)) < G(tmey tag) st +1)-
As k— oo, using (2.8), (2.10) and (2.12), we have
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Iim G(t9, tago) tagos1) =& (2.13)
On the other hand,
Cltm 0t +1: tar9+1) S Otm(ie) tagar ta0i0)t Cltaga tatio s tatio+1)
and
G(tat) ta(+1 tm() < G tag+1 tatd+1) ¥ Gtagd+1r tat+1r tmita)-
As k— oo and using (2.9), (2.12) and(2.13), we have

lim 6(tma9, tago+rr tato+a) =& (2.14)
In a similar way, we have
Cltm(w)+1: tati bt +1) S Gltm 41 tmitds tmi0) ¥ Gtm o tan tat+1)
< 26(ty (1) tm@a+1: tmiao+0)t Cltmon tator tac+1)
and
GC(tm iy tatar tao+1) < Ctmidy tmig+1: tmia+1) + Ctmua+1 ooy tao+1) therefore,
by taking limit k—oo and using (2.9), (2.13), we get

iﬂﬁ[tmik}ﬂr t00r tag+) =& (2.15)

Also,
G(tm ) Tatd+1 tat+1) < Gltmd tm+1) taty+1),
and
G(tm ) T +10 ta+1) < Gt T +10 ) +0)t Clm + 1 tm 410 ta(+1)
<Gt tmw+1 tmo+1)t Clmo+1 tatr ta+1)-
As k—oo and using (2.9), (2.14), we have

lim Gty tmag s tanget) = & (2.16)
Also,
GCltm+t ta)+1 tal+1) S Cltmag+1 ta+1 tagwy)  (2.17)
and
Gltmx)+1 tatdr tati+1) < Clmig+r tat+ tati+0)+ Cltat+1) tai+ 1 tati)-
(2.18)
So, from (2.9), (2.15), (2.16) and (2.17), we have

L{E’jﬁ(tmcmﬂr ta(o+1otat+) = & (2.19)

Finally,
C(tm+1: talk)+1 Tat+2) < Gt +1- Tat 41> ta) + ) O (En i +1 tati +10 tai +2)

< Gt s tag s tago+0)* Cltang, tatg s taaosd)
and
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Gtm o +1 tnt+10 ta+1) < Ot () 210t 41 tai) +2)-
As k— o and by using (2.8), (2.19), we have
iﬁ‘:ﬂG'[tm(k}+1rtn(k}+1rtn£k}+2) - & (2.20)
Since X, 1S Xp(10) ¥ +1 PUING X = X, Y= X0, aNd Z = X ¢1544 in (2.1) for all k >
0,we have
V(G (1) +10 ta() +1- ta) +2)) = VIG(ER 1 (1. 9% (10 DX 10 +1)
< WMy (%10 K () 1)) ~ OM g (1% n (1) K () 1))
where
M (% (1) %n (100 ¥n(i +1)
(G(Txm10 R¥n (10 SXa1041) G(R¥a010, SXa10 41 MXa10 1),
G(Tm(10, 8%n(10 i) )»
=max+4 G [Rxn,:m,hxn.:kjﬂ, hxn.:k;.+1), G[an(k}+1! X fxm'ik})’
G TX (1) Bem(1s i) )
\ G[Rxn':k}’gxn':k}’gxn':k})’ﬁ[sxn':k}+l’ SXp(1) 410 hxnik}ﬂ) 4

T

[ G(tmaor g taga+1) G(tago tago 1 tagos2)s )

G(tma: tat+r tato s )

= max | G(ty00. tan +2: tat +2): Gltao+ 1t 417 tmo1)-
G(tm tm (104 1 tm 0 41)s

\ Gltao, tago+r tago+1) Gltago+1 tago 21 tago +2) /

Taking k—o0 and using (2.9), (2.15), (2.20) we have

y(e) < y(e)—o(e).

Hence, € =0, which is a contradiction. Consequently, {Z, }is a G-Cauchy sequence.

T

Step 111. We will show that f, g, h, R, S and T have a common fixed point.

Since {t, }is a G-Cauchy sequence in the complete symmetric G-metric spaceX, there exists t € X
such that

lim G(t3, 41, tans 1rtj=§ﬂG(Rxan+1rRX3n+1rtj = iﬂﬁ(ﬁianrﬁ{anrﬂ =0,

n—+oo
lim G(tan40tans s t)=lim G(8x3,45, Sx3540,1) = lim G(gxansy, 8¥an40,t) = 0
n—+oo — oo f—oo

and

lim G(t3p+3, tans 3, =1im G(Txan43, X345, 1) = lim G(hxg,y g hxgy o, t) =0
n—+ oo n— oo n—+oo

Suppose condition (i) of our theorem holds.
Assume that R and T are continuous and let the pairs (f, T) and (g, R) are compatible.
This implies that

lim G(Tfxy,, fTxg,, manjﬂﬂﬁtﬁr fTX3y, fTx3,)=0,

n—+oc

and  lim G(Rgxy, ., gR¥g, 44, 8RYG, +1]=§E]3:G(RT=- gRxX3, 41, 8RX5,44)=0.

n—*oa
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SinceRx3y 41 <TR¥3n 41 <X¥30+1< 0Xan 41

= SX3542= 0SX3552= Xap+2= N¥3p40= TX3p 43,

by using (2.1) we obtain

Y(G(fTXgy +3,0RX3, +1,M%3p +2))

S Y(M(TX3,23,R¥3021,¥3022)) — O(M(TX3543,R¥30 44, X3p22)), (2.21)
where
M(T%35+3,R¥35 41, %30 +2)
G(TTXE:'J+E|’ RRx5, 44, 5X3, +:jr G[RRXEH+1’ SXapi2, NXap40 ),

G(TTxanﬂrnganﬂr gRxg, +1]:

= max | G(RRXg,y, hxg, 40, hxg,. ), (8K, FTX5545, fTX5545),
G(TTXan+3, FTX3523, fTXgn43),

G(RRxg, .y, 8R4, 8R¥5, 1), G(Sx5, 40, Sxgp 45, hxg 1)

Taking n— oo, in right hand side,
M(T%3p+3,R¥3n+1,%X3n+2)

— max {G(TLRt, t), G(Rt, t, t), G(Tt, Rt, RtJ,GERt,t,tz),}
G(t, Tt, Tt), G(Tt, Tt, Tt), G(Rt,Rt, Rt), G(t, t, t)

=G(Tt,R, z).

On taking the limit as n—ooin (2.21), we obtain that
W(G(Tt, Rt, t)) < w(G(Tt, Rt, t)) — &(G(Tt, Rt, t)),

and hence, Tt=Rt=1t.

Since ¥3n 41 Xan+2 X3, 42and X3y 45— t, as n—o,

we have X3, 31 X3, +2<t. Therefore, from (2.1),

Y(G(ft, g¥3, 21, WX3542)) S YM(L, X3p 41, %30 42)) — OM(L, X3541,%X3522)), (2.22)

where M(t, ¥3,41,%3542)

G(Tt Rz, 41, S¥3542), G(R¥3p49, SX5p5 5, hxge0),
G(Tt g¥%3541, 8¥an21),
= max G(Rxgpaq, hxgpys, g0 ),G(Sxgp4 . 1 ),
G(Tt, ft, ft),

G(Rotns 1, 8%an 41, 8¥an+1)» G(5X3540, Sxan 45, hxg 1)
Taking n—oo, in right hand side,

G(ttt),G(t 1), G(t t,1), G(Lt, 1), }
G(t ft, ft), G(t ft, ft), G(t £ ), G(L t )
= G(ft.t,t).
Taking n—oo in (2.22),we get

v (G(1t, t, 1) < w(G(ft, t, 1)) — ¢(G(ft, t, 1)),

= I]’IEIK{

hence ft = t.
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Sincexgy, 42X hXg, s0and Xy, 50— t, as n—oo, we haveXz, 42X Z.
Hence from (2.1),
W(G(ft, gt, hXz,42)) < WML, £, X35.42)) — OM(L, £, X3552)). (2.23)
where
G(Tt, Rt, Sx3,4,), G(RE, Sxg54 5, hxg,,,), G(Tt gt gt),

M(t t, X3n22)= max | G(Rthxg, g, hxan s, G(Sxans,. £t f), G(TE £, £1),
G(Rt gt, gt), G(Sx3,40, Sy, hixg,ss)

Taking n— oo, in right hand side,

M(t, t, X3,2,) = max {G(TL Rt,t),G(Rt, t, t), G(Tt, gt, gt), G(Rt,t,tl}
G(t ft, ft), G(Tt ft, ft), G(Rt, gt, gt), G(t. £, )
= G(t, t, gt).
Making n— o in (2.23), we get
w(G(t, gt, 1) < w(G(t, t, g)—o(G(, t, gt)),
which gives gt = t.
Since g(X) is contained in S(X), there exists a point s € X such that t = gt = Sw.
Suppose thathw#Sw.
Since t <gt = Sw<gSw=< w, we have t < w. Hence, from (2.1),
w(G(ft, gt, hw)) < w(M(t, t, w)) — d(M(t, t, w)), (2.24)
where
G(Tt, Rt, Sw),G(Rt, Sw, hw), G(Tt, gt, gt), G(Rt, hw,hw),
M(t, t, w) = max { G(Sw, ft, ft, G(Tt ft, ft), G(Rt gt, gt), G(Sw;, Sw, hw)) }
= G(t, t, hw).
On taking the limit as n—ooin (2.24), we obtain that
W(G(t, t, hw)) < w(G(t, t, hw)) ~d(G(t, t, hw)),
which gives hw = t.
Since h and S are weakly compatible, we have ht = hSw = Shw = St.
Thus, t is a coincidence point of h and S. Now, we show that ht = t.
Since x5, < fx3 and fx;, — t, as n—oo,we havexy, < t. Hence, from (2.1),
W(G(fXzy, gt, ht)) < y(M(¥3,, t, 1)) = 6(M(X3q, 1, 1)), (2.29)
where
G(Txg,, Rt, St), G(Rt, 5t, ht), G(Tx,_, gt, gt),
M(Xan, t, )= max | G(Rt, ht, ht), G(St, fxa,, fixg, ), G(Txgy, gy, fx3,), -
G(Rt, gt, gt), G(St, St, ht)

Taking n— oo, in right hand side,

G(t, Rt, St), G(Rt, 5t, ht), G(t. gt, gt), G(Rt, ht, htj,}

MOXan, )= max { G(St,t, 1), Gt t, t), G(Rt gt gt), G(St, St, ht)

= G(t, t, ht).
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Letting n—o0 in (2.25), we obtain that

W(G(t, t, ht) < w(G(t, t, ht) — §(G(t, t, ht)),

hence ht = t. Therefore, ft=gt=ht=Rt=St=Tt=t.

Following the same arguments, the result is true when (ii) or (iii) of our Theorem holds.

We claim that common fixed point off, g, h, R, S and T is unique. Assume on contrary that fp = gp
=hp=Rp=8Sp=Tp=p, fq=gq=hq= Rq=Sq=Tq=qandp #q.

Using (2.1), we get

W(G(1p, gq, hq)) < y(M(p, q, q)) — ¢(M(p, 9. q))

where

G(Tp.Rqg, S5q),G(Rq,Sq,hq), G(Tp,2q9.2q9), G(Rg,hg, hq],]

M(p, g, = max{
(.. G(Sq,fp, fp), G(Tp.fp, fp), G(Rq, 29, gq),G(Sq.Sq, hq)

=G (p, g, 9).
So,

v(G(p, g, 9) = w(G(p, 9, 9) — &(G(p, g, q))-
Therefore, $(G(p, q, q)) = 0 which impliesthatp=q .
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