International Journal of Engineering \& Scientific Research

Vol. 7 Issue 7, July 2019,
ISSN: 2347-6532 Impact Factor: 6.660
Journal Homepage: http://ijmra.us, Email: esrjeditor@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Common Fixed Point Theorem in Partially OrderedComplete G-Metric space for Six

Mappings

Pardeep Kumar
Assistant Professor, Department of Mathematics

Government College for Girls, Sector-14, Gurugram

Abstract

In this paper a common fixed point theorem for dominating and weak annihilator mappings in a partially ordered complete G-metric space is proved using continuity, weak compatibilityand compatibility.

Keywords:Partial order, Weakly Compatible maps, Partially ordered G-Metric space.

1.Introduction and preliminaries

The weakly contractive mappings on Hilbert spaces was defined byAlber and Guerre-Delabriere as follows:

Definition 1.1 [2] "A mapping $f: X \rightarrow X$ is said to be a weakly contractive mapping if $d(f x, f y)$ $\leq \mathrm{d}(\mathrm{x}, \mathrm{y})-\varphi(\mathrm{d}(\mathrm{x}, \mathrm{y}))$ for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and non-decreasing function such that $\varphi(\mathrm{t})=0$ if and only if $\mathrm{t}=0$."

Theorem 1.2 [9] "Let (X,d)be a complete metric space and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be a weakly contractive mapping. Then f has a unique fixed point."

Mustafa and Sims defined G-metric spaces as a generalization of metric space.
Definition 1.3 [8] "Let $G: X \times X \times X \rightarrow R^{+}$be a function on a non-empty X satisfying
(G-1) $G(x, y, z)=0$ if $x=y=z$,
(G-2) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
(G-3) $\quad G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$,
(G-4) $\quad G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots$ (symmetry in all three variables),
(G-5) $\quad G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$, (rectangle inequality).

The function G is called a generalized metric or more specifically, a G-metric on Xand the pair (X, $G)$ is called a G-metric space."
Zhang and Song defined generalized φ - weak contractive condition as:
Definition 1.4 [10] "Two mappings $T, S: X \rightarrow X$ are called generalized φ-weak contractive if there exists a lower semi-continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(t)=0$ for $t=0$ and $\varphi(t)>0$ for all $\mathrm{t}>0$ such that

$$
\mathrm{d}(\mathrm{Tx}, S y) \leq \mathrm{N}(\mathrm{x}, \mathrm{y})-\varphi(\mathrm{N}(\mathrm{x}, \mathrm{y})) \text { for each } \mathrm{x}, \mathrm{y} \in \mathrm{X},
$$

where $N(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{1}{2}(d(x, S y)+d(y, T x)) . "\right.$
Theorem 1.5 [10] "Let (X, d) be a complete metric space and $T, S: X \rightarrow X$ be generalized φ-weak
contractive mappings, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a lower semi-continuous function with $\varphi(\mathrm{t})=0$ for $t=0$ and $\varphi(t)>0$ for all $t>0$. Then thereexists a unique fixed point $u \in X$ such that $u=T u=$ Su."

The concept of altering distance function was introduced by Khan et. al as follows:
Definition 1.6[6] "The function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following conditions hold:
(i) $\quad \psi$ is continuous and non-decreasing;
(ii) $\quad \psi(t)=0$ if and only if $t=0$ ".

Definition 1.7A partial order is a binary relation \preccurlyeq over a set X which is reflexive, anti-symmetric and transitive, i.e. which satisfies, for all $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{X}$;
(i) $\mathrm{p} \leqslant \mathrm{p}$, (reflexivity)
(ii) If $\mathrm{p} \leqslant \mathrm{q}$ and $\mathrm{q} \leqslant \mathrm{p}$ then $\mathrm{p}=\mathrm{q}$, (anti-symmetry)
(iii) If $p \preccurlyeq q$ and $q \preccurlyeq r$ then $p \preccurlyeq r$. (transitivity)

A set with a partial order $(\mathrm{X}, \preccurlyeq)$ is called a partially ordered set.
Definition 1.8 A triplet (X, G, \leqslant) is called a partially ordered G-metric space if (X, $\preccurlyeq)$ is a partially ordered set and (X, G) is a G-metric space.
Definition 1.9[1] "Let (X, \preccurlyeq) be a partially ordered set. A mapping f is called a dominating map on X, if $x \leqslant f x$ for all $x \in X$."

Definition 1.10[1] "Let $(\mathrm{X}, \preccurlyeq)$ be a partially ordered set. A mapping f is called a weak annihilator of g, if $f g x \leqslant x$ for all $x \in X$."
Definition 1.11[1] "A subset W of a partially ordered set X is said to be well ordered if every two elements of W be comparable."
Definition 1.12[4]"Let (X, d) be a metric space and $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be two mappings. The pair (f, g) is said to be compatible if and only if
$\lim _{n \rightarrow \infty} d\left(\mathrm{fgx}_{n}, \mathrm{gfx}_{n}\right)=0$, whenever $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a sequence in X such that
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{fx}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{gx}_{\mathrm{n}}=$ tfor some $\mathrm{t} \in \mathrm{X}$."
Definition 1.13 [7]"Let(X, G)be a G-metric space and $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be two mappings. The pair (f, g) is said to be compatible if and only if $\lim _{n \rightarrow \infty} G\left(\mathrm{fgx}_{n}, f \mathrm{fgx}_{n}, g f x_{n}\right)=0$, whenever $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} \mathrm{fx}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} g \mathrm{x}_{\mathrm{n}}=\mathrm{t} \text {, for some } \mathrm{t} \in \mathrm{X} . "
$$

Definition 1.14[5]"Let f and g be two self-mappings of a metric space (X, d). Then f and g are said to be weakly compatible if for all $\mathrm{x} \in \mathrm{X}$, the equality $\mathrm{fx}=\mathrm{gx}$ implies $\mathrm{fgx}=\mathrm{gfx}$."

Definition 1.15[3] "Let (X, \preccurlyeq) be a partially ordered set and $f, g, h: X \rightarrow X$ be mappings such that $f(X) \subseteq h(X)$ and $g(X) \subseteq h(X)$. The ordered pair (f,g)is said to be partially weakly increasing with respect to h if for all $x \in X, f x \preccurlyeq g y$, where
$\mathrm{y} \in h^{-1}$ (fx)."

2. Main Result

Theorem 2.1 Let (X, \preccurlyeq, G) be a partially ordered complete G-metric space. Let f, g, h, R, S, T : X $\rightarrow X$ be the six mappings such that $f(X)$ is contained in $R(X), g(X)$ is contained in $S(X), h(X)$ is contained in $\mathrm{T}(\mathrm{X})$ and dominating maps f, g and h are weak annihilators of R, S and T respectively. Suppose that for every $x, y, z \in X$,

$$
\begin{equation*}
\psi(\mathrm{G}(\mathrm{fx}, \mathrm{gy}, \mathrm{hz})) \leq \psi(\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}))-\phi(\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z})) \tag{2.1}
\end{equation*}
$$

$$
\text { where } \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left\{\begin{array}{c}
\mathrm{G}(\mathrm{Tx}, \mathrm{Ry}, \mathrm{Sz}), \mathrm{G}(\mathrm{Ry}, \mathrm{Sz}, \mathrm{hz}), \mathrm{G}(\mathrm{Tx}, \mathrm{gy}, \mathrm{gy}), \\
\mathrm{G}(\mathrm{Ry}, \mathrm{hz}, \mathrm{hz}), \mathrm{G}(\mathrm{Sz}, \mathrm{fx}, \mathrm{fx}), \mathrm{G}(\mathrm{Tx}, \mathrm{fx}, \mathrm{fx}), \\
\mathrm{G}(\mathrm{Ry}, \mathrm{gy}, \mathrm{gy}), \mathrm{G}(\mathrm{Sz}, \mathrm{Sz}, \mathrm{hz})
\end{array}\right\}
$$

and $\psi, \phi:[0, \infty) \rightarrow[0, \infty)$ are altering distance functions. Then, f, g, h, R, S and T have a unique common fixed point in X provided G-metric space is symmetric and for a non-decreasing sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ with $\mathrm{X}_{\mathrm{n}} \leqslant \mathrm{y}_{\mathrm{n}}$ for all $\mathrm{n}, \mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{u}$ implies that $\mathrm{x}_{\mathrm{n}} \leqslant \mathrm{u}$ and one of the following:
(i) g or R and for T are continuous, (f, T) and (g, R) are compatible and (h, S) is weakly compatible
or
(ii) $\quad \mathrm{h}$ or S and f or T are continuous, ($\mathrm{f}, \mathrm{T})$ and (h, S) are compatible and (g, R) is weakly compatible
or
(iii) g or R and h or S are continuous, (g, R) and (h, S) are compatible and (f, T) is weakly compatible.

Proof. Let $x_{0} \in X$ be an arbitrary point. Since $f(X)$ is contained in $R(X)$, we can have $x_{1} \in X$ such that $f x_{0}=R x_{1}$. Since $g(X)$ is contained in $S(X)$, we can choose $x_{2} \in X$ such that $g x_{1}=S x_{2}$. Also, as $h(X)$ is contained in $T(X)$, we can choose $x_{3} \in X$ such that $h x_{2}=T x_{3}$. Repeating the same argument, we can construct a sequence $\left\{\mathrm{t}_{\mathrm{n}}\right\}$ defined by
$\mathrm{t}_{3 \mathrm{n}+1}=\mathrm{Rx}_{3 \mathrm{n}+1}=\mathrm{fx}_{3 \mathrm{n}}, \mathrm{t}_{3 \mathrm{n}+2}=\mathrm{Sx}_{3 \mathrm{n}+2}=\mathrm{gx}_{3 \mathrm{n}+1}$ andt $_{3 \mathrm{n}+3}=\mathrm{Tx}_{3 \mathrm{n}+3}=\mathrm{hx} \mathrm{X}_{3 \mathrm{n}+2}$,
for all $\mathrm{n} \geq 0$.
Since f, g and h are dominating and f, g and h are weak annihilators of R, S and T, we obtain

$$
\begin{aligned}
& \mathrm{x}_{0} \leqslant \mathrm{fx}_{0}=\mathrm{Rx}_{1} \preccurlyeq \mathrm{fRx}_{1} \leqslant \mathrm{x}_{1} \leqslant \mathrm{gx}_{1} \\
& =\mathrm{Sx}_{2} \leqslant \mathrm{gSx}_{2} \leqslant \mathrm{x}_{2} \leqslant \mathrm{hx}_{2} \\
& =\mathrm{Tx}_{3} \preccurlyeq \mathrm{hTx}_{3} \preccurlyeq \mathrm{x}_{3} .
\end{aligned}
$$

By continuing this process, we get
$\mathrm{x}_{1} \leqslant \mathrm{x}_{2} \leqslant \mathrm{x}_{3} \leqslant \cdots \leqslant \mathrm{x}_{\mathrm{k}} \leqslant \mathrm{x}_{\mathrm{k}+1} \leqslant \cdots$.
We will complete the proof in three steps.
Step I. We will prove that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+2}\right)=0$.
Define $G_{k}=G\left(t_{k}, t_{k+1}, t_{k+2}\right)$. Suppose $G_{k_{0}}=0$ for some k_{0}. Then, $t_{k_{0}}=t_{k_{0}+1}=t_{k_{0}+2}$. Consequently, the sequence $\left\{\mathrm{t}_{\mathrm{k}}\right\}$ is constant, for $\mathrm{k} \geq \mathrm{k}_{0}$. Indeed, let $\mathrm{k}_{0}=3 \mathrm{n}$.

Then $t_{3 n}=t_{3 n+1}=t_{3 n+2}$ and we obtain from (2.1),

$$
\begin{align*}
& \psi\left(\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)\right)=\psi\left(\mathrm { G } \left(\mathrm{fx}_{3 \mathrm{n}},\right.\right.\left.\left.\mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{hx}_{3 \mathrm{n}+2}\right)\right) \\
& \leq \tag{2.2}\\
& \leq\left(\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right)-\phi\left(\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right)
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right) \\
& =\max \left\{\begin{array}{c}
\mathrm{G}\left(\mathrm{Tx}_{3 \mathrm{n}}, \mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{Sx}_{3 \mathrm{n}+2}\right), \mathrm{G}\left(\mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+2}\right), \\
\mathrm{G}\left(\mathrm{Tx}_{3 n}, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+1}\right), \\
\mathrm{G}\left(\mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{hx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+2}\right), \mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{fx}_{3 \mathrm{n}}, \mathrm{fx}_{3 \mathrm{n}}\right), \\
\mathrm{G}\left(\mathrm{Tx}_{3 \mathrm{n}}, \mathrm{fx}_{3 n}, \mathrm{fx}_{3 \mathrm{n}}\right), \\
\mathrm{G}\left(\mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+1}\right), \mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+2}\right)
\end{array}\right\}= \\
& \max \left\{\begin{array}{c}
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right), \\
G\left(t_{3 n}, t_{3 n+2}, t_{3 n+2}\right), \\
G\left(t_{3 n+1}, t_{3 n+3}, t_{3 n+3}\right), G\left(t_{3 n+2}, t_{3 n+1}, t_{3 n+1}\right), \\
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+1}\right), \\
G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+2}\right), G\left(t_{3 n+2}, t_{3 n+2}, t_{3 n+3}\right)
\end{array}\right\} \\
& \leq \max \left\{\begin{array}{c}
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right), \\
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), \\
G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right), G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), \\
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), \\
G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right), G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right)
\end{array}\right\} \\
& =G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right) \text {. }
\end{aligned}
$$

Now from (2.2),
$\psi\left(G\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)\right) \leq \psi\left(\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)\right)-\phi\left(\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)\right)$,
and so, $\phi\left(G\left(\mathrm{t}_{3 n+1}, \mathrm{t}_{3 n+2}, \mathrm{t}_{3 n+3}\right)\right)=0$, that is, $\mathrm{t}_{3 n+1}=\mathrm{t}_{3 n+2}=\mathrm{t}_{3 n+3}$.
Similarly, if $k_{0}=3 n+1$ or $k_{0}=3 n+2$, one can easily obtain that

$$
\mathrm{t}_{3 \mathrm{n}+2}=\mathrm{t}_{3 \mathrm{n}+3}=\mathrm{t}_{3 \mathrm{n}+4} \mathrm{andt}_{3 \mathrm{n}+3}=\mathrm{t}_{3 \mathrm{n}+4}=\mathrm{t}_{3 \mathrm{n}+5}
$$

So the sequence $\left\{t_{k}\right\}$ is constant (for $k \geq k_{0}$), and $t_{k_{0}}$ is a common fixed point of R, S, T, f, g and h.
Let for all $\mathrm{k}, \mathrm{G}_{\mathrm{k}}=\mathrm{G}\left(\mathrm{t}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+2}\right)>0$
We prove that for each $\mathrm{k}=1,2,3, \cdots$
$\mathrm{G}\left(\mathrm{t}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+2}, \mathrm{t}_{\mathrm{k}+3}\right) \leq \mathrm{M}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}, \mathrm{x}_{\mathrm{k}+2}\right)$
$=G\left(t_{k}, t_{k+1}, t_{k+2}\right)$.

Let $\mathrm{k}=3 \mathrm{n}$. Since $\mathrm{x}_{\mathrm{k}-1} \leqslant \mathrm{x}_{\mathrm{k}}$, using (2.1) we obtain that

$$
\begin{align*}
\psi\left(\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)\right)=\psi\left(\mathrm { G } \left(\mathrm{fx}_{3 \mathrm{n}},\right.\right. & \left.\left.\mathrm{Sx}_{3 \mathrm{n}+1}, \mathrm{~h} \mathrm{x}_{3 \mathrm{n}+2}\right)\right) \\
\leq & \psi\left(\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right)-\phi\left(\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right) \tag{2.5}
\end{align*}
$$

where
$\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)$

$$
\begin{aligned}
& =\max \left\{\begin{array}{c}
G\left(\mathrm{Tx}_{3 n}, \mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{Sx}_{3 \mathrm{n}+2}\right), \mathrm{G}\left(\mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+2}\right), \\
\mathrm{G}\left(\mathrm{Tx}_{3 \mathrm{n}}, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+1}\right), \\
\mathrm{G}\left(\mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{hx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+2}\right), \mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{fx}_{3 \mathrm{n}}, \mathrm{fx}_{3 \mathrm{n}}\right), \\
\mathrm{G}\left(\mathrm{Tx}_{3 \mathrm{n}}, \mathrm{fx}_{3 \mathrm{n}}, \mathrm{fx}_{3 \mathrm{n}}\right), \\
\mathrm{G}\left(\mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+1}\right), \mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+2}\right)
\end{array}\right\} \\
& =\max \left\{\begin{array}{c}
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right), \\
G\left(t_{3 n}, t_{3 n+2}, t_{3 n+2}\right), \\
G\left(t_{3 n+1}, t_{3 n+3}, t_{3 n+3}\right), G\left(t_{3 n+2}, t_{3 n+1}, t_{3 n+1}\right), \\
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+1}\right), \\
G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+2}\right), G\left(t_{3 n+2}, t_{3 n+2}, t_{3 n+3}\right)
\end{array}\right\} \\
& \leq \max \left\{\begin{array}{c}
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right), \\
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), \\
G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right), G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), \\
G\left(t_{3 n}, t_{3 n+1}, t_{3 n+2}\right), \\
G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right), G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right)
\end{array}\right\} \\
& =\max \left[G\left(\mathrm{t}_{3 \mathrm{n}}, \mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}\right), \mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)\right. \text {. }
\end{aligned}
$$

Since ψ is a non-decreasing function, we get
$G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right) \leq M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)$.
If for $\mathrm{n} \geq 0, \mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)>\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}}, \mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}\right)>0$, then
$\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{X}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)=\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)$.
Therefore, (2.5) implies that

$$
\psi\left(G\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)\right) \leq \psi\left(\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)\right)-\phi\left(\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)\right),
$$

which is only possible when $G\left(t_{3 n+1}, t_{3 n+2}, t_{3 n+3}\right)=0$. This is a contradiction to (2.3)
Hence, $G\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right) \leq \mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}}, \mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}\right)$ and
$\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)=\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}}, \mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}\right)$.
Therefore, (2.4) is proved for $\mathrm{k}=3 \mathrm{n}$. Similarly, it can be shown that
$\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}, \mathrm{t}_{3 \mathrm{n}+4}\right) \leq \mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}, \mathrm{x}_{3 \mathrm{n}+3}\right)$
$=G\left(\mathrm{t}_{3 \mathrm{n}+1}, \mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}\right)$
and
$\mathrm{G}\left(\mathrm{t}_{3 \mathrm{n}+3}, \mathrm{t}_{3 \mathrm{n}+4}, \mathrm{t}_{3 \mathrm{n}+5}\right) \leq \mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}+2}, \mathrm{x}_{3 \mathrm{n}+3}, \mathrm{X}_{3 \mathrm{n}+4}\right)$
$=G\left(\mathrm{t}_{3 \mathrm{n}+2}, \mathrm{t}_{3 \mathrm{n}+3}, \mathrm{z}_{3 \mathrm{n}+4}\right)$.

Hence, $\left\{\mathrm{G}\left(\mathrm{t}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+2}\right)\right\}$ is a non-decreasing sequence of non-negative real numbers.
Thus, there is an $r \geq 0$ such that

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{k},}, \mathrm{t}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+2}\right)=\mathrm{r} \tag{2.6}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \mathrm{G}\left(\mathrm{t}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+2}, \mathrm{t}_{\mathrm{k}+3}\right) \leq \mathrm{M}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}, \mathrm{x}_{\mathrm{k}+2}\right) \\
& \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{k},}, \mathrm{t}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+2}\right)
\end{aligned}
$$

as $\mathrm{k} \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{M}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}, \mathrm{x}_{\mathrm{k}+2}\right)=\mathrm{r} \tag{2.7}
\end{equation*}
$$

Letting $\mathrm{n} \rightarrow \infty$ in (2.5), using (2.6), (2.7) and the continuity of ψ and ϕ, we get $\psi(\mathrm{r}) \leq \psi(\mathrm{r})-\phi(\mathrm{r}) \leq \psi(\mathrm{r})$ and hence $\phi(\mathrm{r})=0$. This gives us

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}, \mathrm{x}_{\mathrm{k}+2}\right)=0 \tag{2.8}
\end{equation*}
$$

from our assumptions about ϕ. Also, from Definition 1.3 part (G-3), we have

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}, \mathrm{x}_{\mathrm{k}+2}\right)=0 \tag{2.9}
\end{equation*}
$$

Step II.We will show that $\left\{\mathrm{t}_{\mathrm{n}}\right\}$ is a G-Cauchy sequence in X .
We will show that for every $\varepsilon>0$, there exists a positive integer k such that for all $\mathrm{m}, \mathrm{n} \geq \mathrm{k}, \mathrm{G}\left(\mathrm{t}_{\mathrm{m}}, \mathrm{t}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)<\varepsilon$. Suppose the above statement is false. Then there exists $\varepsilon>0$ for which we can find subsequences $\left\{\mathrm{t}_{\mathrm{m}(\mathrm{k})}\right\}$ and $\left\{\mathrm{t}_{\mathrm{n}(\mathrm{k})}\right\}$ of $\left\{\mathrm{t}_{\mathrm{n}}\right\}$ such that $\mathrm{n}(\mathrm{k})>\mathrm{m}(\mathrm{k}) \geq \mathrm{k}$ and
(a) $\mathrm{m}(\mathrm{k})=3 \mathrm{t}$ and $\mathrm{n}(\mathrm{k})=3 \mathrm{t}^{\prime}+1$, where t and t^{\prime} are non-negative integers.
(b) $\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right) \geq \varepsilon$.
(c) $\mathrm{n}(\mathrm{k})$ is the smallest number such that the condition (b) holds,

$$
\begin{equation*}
\text { i.e. } G\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})-1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})-1}\right)<\varepsilon . \tag{2.11}
\end{equation*}
$$

From rectangle inequality and (2.11), we have
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})-1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})-1}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})-1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right)$
$<\varepsilon+\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})-1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)$.
As $\mathrm{k} \rightarrow \infty$ and using (2.8) and (2.11), we have
$\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right)=\varepsilon$.
Again from rectangle inequality,
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)$
$\leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}\right)$
and
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)$.
As $\mathrm{k} \rightarrow \infty$, using (2.8), (2.10) and (2.12), we have

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)=\varepsilon \tag{2.13}
\end{equation*}
$$

On the other hand,
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)$
and
$\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})}\right)$.
As $\mathrm{k} \rightarrow \infty$ and using (2.9), (2.12) and(2.13), we have

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)=\varepsilon . \tag{2.14}
\end{equation*}
$$

In a similar way, we have
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{m}(\mathrm{k})}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)$
$\leq 2 \mathrm{G}\left(\mathrm{t}_{\mathrm{m}}(\mathrm{k}), \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{m}}(\mathrm{k}), \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)$
and
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \quad$ therefore, by taking limit $\mathrm{k} \rightarrow \infty$ and using (2.9), (2.13), we get

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)=\varepsilon . \tag{2.15}
\end{equation*}
$$

Also,
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)$,
and
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{m}}(\mathrm{k})+1, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)$
$\leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)$.
As $k \rightarrow \infty$ and using (2.9), (2.14), we have

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)=\varepsilon . \tag{2.16}
\end{equation*}
$$

Also,
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right)$
and
$\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}\right)$.

So, from (2.9), (2.15), (2.16) and (2.17), we have
$\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)=\varepsilon$.

Finally,

$$
\begin{aligned}
& \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}\right) \\
& \quad \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right)+\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}\right)
\end{aligned}
$$

and

$$
\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right) \leq \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}\right) .
$$

As $\mathrm{k} \rightarrow \infty$ and by using (2.8), (2.19), we have

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}\right)=\varepsilon . \tag{2.20}
\end{equation*}
$$

Since $\mathrm{x}_{\mathrm{m}(\mathrm{k})} \leqslant \mathrm{x}_{\mathrm{n}(\mathrm{k})} \leqslant \mathrm{x}_{\mathrm{n}(\mathrm{k})+1}$, putting $\mathrm{x}=\mathrm{x}_{\mathrm{m}(\mathrm{k}), \mathrm{y}=\mathrm{x}_{\mathrm{n}(\mathrm{k})} \text {, and } \mathrm{z}=\mathrm{x}_{\mathrm{n}(\mathrm{k})+1} \text { in (2.1) for all } \mathrm{k} \geq}$ 0 ,we have

$$
\psi\left(\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}\right)\right)=\psi\left(\mathrm{G}\left(\mathrm{fx}_{\mathrm{m}(\mathrm{k})}, \mathrm{gx}_{\mathrm{n}(\mathrm{k})}, \mathrm{hx}_{\mathrm{n}(\mathrm{k})+1}\right)\right)
$$

$$
\leq \psi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{m}(\mathrm{k})}, \mathrm{x}_{\mathrm{n}(\mathrm{k})}, \mathrm{x}_{\mathrm{n}(\mathrm{k})+1}\right)\right)-\phi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{m}(\mathrm{k})}, \mathrm{x}_{\mathrm{n}(\mathrm{k})}, \mathrm{x}_{\mathrm{n}(\mathrm{k})+1}\right)\right),
$$

where

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{x}_{\mathrm{m}(\mathrm{k})}, \mathrm{x}_{\mathrm{n}(\mathrm{k})}, \mathrm{x}_{\mathrm{n}(\mathrm{k})+1}\right) \quad \begin{array}{r}
\mathrm{G}\left(\mathrm{Tx}_{\mathrm{m}(\mathrm{k})}, \mathrm{Rx}_{\mathrm{n}(\mathrm{k})}, \mathrm{Sx}_{\mathrm{n}(\mathrm{k})+1}\right), \mathrm{G}\left(\mathrm{Rx}_{\mathrm{n}(\mathrm{k})}, \mathrm{Sx}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{hx}_{\mathrm{n}(\mathrm{k})+1}\right), \\
\mathrm{G}\left(\mathrm{Tx}_{\mathrm{m}(\mathrm{k})}, \mathrm{gx}_{\mathrm{n}(\mathrm{k})}, \mathrm{gx}_{\mathrm{n}(\mathrm{k})}\right), \\
=\max \left\{\begin{array}{c}
\mathrm{G}\left(\mathrm{Rx}_{\mathrm{n}(\mathrm{k})}, \mathrm{hx}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{hx}_{\mathrm{n}(\mathrm{k})+1}\right), \mathrm{G}\left(\mathrm{Sx}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{fx}_{\mathrm{m}(\mathrm{k})}, \mathrm{fx}_{\mathrm{m}(\mathrm{k})}\right), \\
\mathrm{G}\left(\mathrm{Tx}_{\mathrm{m}(\mathrm{k})}, \mathrm{fx}_{\mathrm{m}(\mathrm{k})}, \mathrm{fx}_{\mathrm{m}(\mathrm{k})}\right), \\
\mathrm{G}\left(\mathrm{Rx}_{\mathrm{n}(\mathrm{k})}, \mathrm{gx}_{\mathrm{n}(\mathrm{k})}, \mathrm{gx}_{\mathrm{n}(\mathrm{k})}\right), \mathrm{G}\left(\mathrm{Sx}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{Sx}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{hx}_{\mathrm{n}(\mathrm{k})+1}\right)
\end{array}\right\} \\
=\max \left\{\begin{array}{c}
\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right), \mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}\right), \\
\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}, \mathrm{t}_{\mathrm{n}(\mathrm{k}(\mathrm{k})+2}\right), \mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}\right), \\
\mathrm{G}\left(\mathrm{t}_{\mathrm{m}(\mathrm{k})}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{m}(\mathrm{k})+1}\right), \\
\mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}\right), \mathrm{G}\left(\mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+1}, \mathrm{t}_{\mathrm{n}(\mathrm{k})+2}\right)
\end{array}\right\} .
\end{array}
\end{aligned}
$$

Taking $\mathrm{k} \rightarrow \infty$ and using (2.9), (2.15), (2.20) we have

$$
\psi(\varepsilon) \leq \psi(\varepsilon)-\phi(\varepsilon) .
$$

Hence, $\varepsilon=0$, which is a contradiction. Consequently, $\left\{\mathrm{z}_{\mathrm{n}}\right\}$ is a G-Cauchy sequence.
Step III. We will show that $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{R}, \mathrm{S}$ and T have a common fixed point.
Since $\left\{\mathrm{t}_{\mathrm{n}}\right\}$ is a G-Cauchy sequence in the complete symmetric G-metric spaceX, there exists $\mathrm{t} \in \mathrm{X}$ such that
$\lim _{n \rightarrow \infty} G\left(t_{3 n+1}, t_{3 n+1}, t\right)=\lim _{n \rightarrow \infty} G\left(R x_{3 n+1}, R x_{3 n+1}, t\right)=\lim _{n \rightarrow \infty} G\left(\mathrm{fx}_{3 n}, f x_{3 n}, t\right)=0$,
$\lim _{n \rightarrow \infty} G\left(t_{3 n+2}, t_{3 n+2}, t\right)=\lim _{n \rightarrow \infty} G\left(S x_{3 n+2}, S x_{3 n+2}, t\right)=\lim _{n \rightarrow \infty} G\left(g x_{3 n+1}, g x_{3 n+1}, t\right)=0$
and
$\lim _{n \rightarrow \infty} G\left(t_{3 n+3}, t_{3 n+3}, t\right)=\lim _{n \rightarrow \infty} G\left(T x_{3 n+3}, T x_{3 n+3}, t\right)=\lim _{n \rightarrow \infty} G\left(h x_{3 n+2}, h x_{3 n+2}, t\right)=0$
Suppose condition (i) of our theorem holds.
Assume that R and T are continuous and let the pairs (f, T) and (g, R) are compatible.
This implies that

$$
\begin{aligned}
& \lim _{\mathrm{n} \rightarrow \infty} \mathrm{G}\left(\mathrm{Tfx}_{3 \mathrm{n}}, \mathrm{fTx}_{3 n}, \mathrm{fTx}_{3 \mathrm{n}}\right)=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{G}\left(\mathrm{Tt}, \mathrm{fTx}_{3 \mathrm{n}}, \mathrm{fTx}_{3 \mathrm{n}}\right)=0,
\end{aligned}
$$

SinceRx $\mathrm{Xn}_{\mathrm{n}+1} \preccurlyeq \mathrm{fRx}_{3 \mathrm{n}+1} \preccurlyeq \mathrm{x}_{3 \mathrm{n}+1} \preccurlyeq \mathrm{gx}_{3 \mathrm{n}+1}$
$=S x_{3 n+2} \preccurlyeq \mathrm{gSx}_{3 \mathrm{n}+2} \preccurlyeq \mathrm{x}_{3 \mathrm{n}+2} \preccurlyeq \mathrm{hx}_{3 \mathrm{n}+2}=\mathrm{Tx}_{3 \mathrm{n}+3}$,
by using (2.1) we obtain

$$
\begin{align*}
\psi\left(\mathrm { G } \left(\mathrm{fTx}_{3 \mathrm{n}+3}, \mathrm{gRx}_{3 \mathrm{n}+1},\right.\right. & \left.\left., \mathrm{X}_{3 \mathrm{n}+2}\right)\right) \\
& \leq \psi\left(\mathrm{M}\left(\mathrm{Tx}_{3 \mathrm{n}+3}, \mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right)-\phi\left(\mathrm{M}\left(\mathrm{Tx}_{3 \mathrm{n}+3}, \mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right), \tag{2.21}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{Tx}_{3 \mathrm{n}+3}, \mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)
\end{aligned}
$$

Taking $\mathrm{n} \rightarrow \infty$, in right hand side,
$\mathrm{M}\left(\mathrm{Tx}_{3 \mathrm{n}+3}, \mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)$
$=\max \left\{\begin{array}{l}\mathrm{G}(\mathrm{Tt}, \mathrm{Rt}, \mathrm{t}), \mathrm{G}(\mathrm{Rt}, \mathrm{t}, \mathrm{t}), \mathrm{G}(\mathrm{Tt}, \mathrm{Rt}, \mathrm{Rt}), \mathrm{G}(\mathrm{Rt}, \mathrm{t}, \mathrm{tz}), \\ \mathrm{G}(\mathrm{t}, \mathrm{Tt}, \mathrm{Tt}), \mathrm{G}(\mathrm{Tt}, \mathrm{Tt}, \mathrm{Tt}), \mathrm{G}(\mathrm{Rt}, \mathrm{Rt}, \mathrm{Rt}), \mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{t})\end{array}\right\}$
$=\mathrm{G}(\mathrm{Tt}, \mathrm{R}, \mathrm{z})$
On taking the limit as $\mathrm{n} \rightarrow \infty$ in (2.21), we obtain that
$\psi(\mathrm{G}(\mathrm{Tt}, \mathrm{Rt}, \mathrm{t})) \leq \psi(\mathrm{G}(\mathrm{Tt}, \mathrm{Rt}, \mathrm{t}))-\phi(\mathrm{G}(\mathrm{Tt}, \mathrm{Rt}, \mathrm{t}))$,
and hence, $\mathrm{Tt}=\mathrm{Rt}=\mathrm{t}$.
Since $\mathrm{x}_{3 \mathrm{n}+1} \leqslant \mathrm{x}_{3 \mathrm{n}+2} \leqslant \mathrm{hx}_{3 \mathrm{n}+2}$ and $\mathrm{hx}_{3 \mathrm{n}+2} \rightarrow \mathrm{t}$, as $\mathrm{n} \rightarrow \infty$,
we have $\mathrm{x}_{3 \mathrm{n}+1} \leqslant \mathrm{x}_{3 \mathrm{n}+2} \preccurlyeq \mathrm{t}$. Therefore, from (2.1),
$\psi\left(G\left(f t, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{hx}_{3 \mathrm{n}+2}\right)\right) \leq \psi\left(\mathrm{M}\left(\mathrm{t}, \mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right)-\phi\left(\mathrm{M}\left(\mathrm{t}, \mathrm{x}_{3 \mathrm{n}+1}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right),(2.22)$
where $M\left(t, x_{3 n+1}, x_{3 n+2}\right)$
$=\max \left\{\begin{array}{c}\mathrm{G}\left(\mathrm{Tt}_{1}, \mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{Sx}_{3 \mathrm{n}+2}\right), \mathrm{G}\left(\mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{hx} \mathrm{x}_{3 \mathrm{n}+2}\right), \\ \mathrm{G}\left(\mathrm{Tt}, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+1}\right), \\ \mathrm{G}\left(\mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{hx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+2}\right), \mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{ft}, \mathrm{ft}\right), \\ \mathrm{G}(\mathrm{Tt}, \mathrm{ft}, \mathrm{ft}), \\ \mathrm{G}\left(\mathrm{Rx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+1}\right), \mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+2}\right)\end{array}\right\}$.
Taking $n \rightarrow \infty$, in right hand side,

```
max}{\begin{array}{c}{\textrm{G}(\textrm{t},\textrm{t},\textrm{t}),\textrm{G}(\textrm{t},\textrm{t},\textrm{t}),\textrm{G}(\textrm{t},\textrm{t},\textrm{t}),\textrm{G}(\textrm{t},\textrm{t},\textrm{t}),}\\{\textrm{G}(\textrm{t},\textrm{ft},\textrm{ft}),\textrm{G}(\textrm{t},\textrm{ft},\textrm{ft}),\textrm{G}(\textrm{t},\textrm{t},\textrm{t}),G(\textrm{t},\textrm{t},\textrm{t})}\end{array}
=G(ft, t, t).
```

Taking $\mathrm{n} \rightarrow \infty$ in (2.22),we get

$$
\psi(\mathrm{G}(\mathrm{ft}, \mathrm{t}, \mathrm{t})) \leq \psi(\mathrm{G}(\mathrm{ft}, \mathrm{t}, \mathrm{t}))-\phi(\mathrm{G}(\mathrm{ft}, \mathrm{t}, \mathrm{t})),
$$

hence $\mathrm{ft}=\mathrm{t}$.

Since $\mathrm{X}_{3 \mathrm{n}+2} \preccurlyeq \mathrm{hx}_{3 \mathrm{n}+2}$ and $\mathrm{h} \mathrm{x}_{3 \mathrm{n}+2} \rightarrow \mathrm{t}$, as $\mathrm{n} \rightarrow \infty$, we have $\mathrm{x}_{3 \mathrm{n}+2} \preccurlyeq \mathrm{z}$.
Hence from (2.1),

$$
\begin{equation*}
\psi\left(\mathrm{G}\left(\mathrm{ft}, \mathrm{gt}, \mathrm{~h} \mathrm{x}_{3 \mathrm{n}+2}\right)\right) \leq \psi\left(\mathrm{M}\left(\mathrm{t}, \mathrm{t}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right)-\phi\left(\mathrm{M}\left(\mathrm{t}, \mathrm{t}, \mathrm{x}_{3 \mathrm{n}+2}\right)\right) . \tag{2.23}
\end{equation*}
$$

where

$$
M\left(t, t, x_{3 n+2}\right)=\max \left\{\begin{array}{c}
\mathrm{G}\left(\mathrm{Tt}, \mathrm{Rt}, \mathrm{Sx}_{3 \mathrm{n}+2}\right), \mathrm{G}\left(\mathrm{Rt}, \mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{~h} \mathrm{x}_{3 \mathrm{n}+2}\right), \mathrm{G}(\mathrm{Tt}, \mathrm{gt}, \mathrm{gt}), \\
\mathrm{G}\left(\mathrm{Rt}, \mathrm{hx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+2}\right), \mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{ft}, \mathrm{ft}\right), \mathrm{G}(\mathrm{Tt}, \mathrm{ft}, \mathrm{ft}), \\
\mathrm{G}(\mathrm{Rt}, \mathrm{gt}, \mathrm{gt}), \mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{Sx}_{3 \mathrm{n}+2}, \mathrm{hx} \mathrm{x}_{3 \mathrm{n}+2}\right)
\end{array}\right\}
$$

Taking $\mathrm{n} \rightarrow \infty$, in right hand side,
$M\left(t, t, x_{3 n+2}\right)=\max \left\{\begin{array}{c}G(T \mathrm{t}, \mathrm{Rt}, \mathrm{t}), \mathrm{G}(\mathrm{Rt}, \mathrm{t}, \mathrm{t}), \mathrm{G}(\mathrm{Tt}, \mathrm{gt}, \mathrm{gt}), \mathrm{G}(\mathrm{Rt}, \mathrm{t}, \mathrm{t}), \\ \mathrm{G}(\mathrm{t}, \mathrm{ft}, \mathrm{ft}), \mathrm{G}(\mathrm{Tt}, \mathrm{ft}, \mathrm{ft}), \mathrm{G}(\mathrm{Rt}, \mathrm{gt}, \mathrm{gt}), \mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{t})\end{array}\right\}$
$=\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{gt})$.
Making $\mathrm{n} \rightarrow \infty$ in (2.23), we get
$\psi(\mathrm{G}(\mathrm{t}, \mathrm{gt}, \mathrm{t})) \leq \psi(\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{gt}))-\phi(\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{gt}))$,
which gives $\mathrm{gt}=\mathrm{t}$.
Since $g(X)$ is contained in $S(X)$, there exists a point $s \in X$ such that $t=g t=S w$.
Suppose thathw \neq Sw.
Since $\mathrm{t} \leqslant \mathrm{gt}=\mathrm{Sw} \preccurlyeq \mathrm{gSw} \leqslant \mathrm{w}$, we have $\mathrm{t} \leqslant \mathrm{w}$. Hence, from (2.1),

$$
\begin{equation*}
\psi(\mathrm{G}(\mathrm{ft}, \mathrm{gt}, \mathrm{hw})) \leq \psi(\mathrm{M}(\mathrm{t}, \mathrm{t}, \mathrm{w}))-\phi(\mathrm{M}(\mathrm{t}, \mathrm{t}, \mathrm{w})), \tag{2.24}
\end{equation*}
$$

where

$$
M(\mathrm{t}, \mathrm{t}, \mathrm{w})=\max \left\{\begin{array}{c}
\mathrm{G}(\mathrm{Tt}, \mathrm{Rt}, \mathrm{Sw}), \mathrm{G}(\mathrm{Rt}, \mathrm{Sw}, \mathrm{hw}), \mathrm{G}(\mathrm{Tt}, \mathrm{gt}, \mathrm{gt}), \mathrm{G}(\mathrm{Rt}, \mathrm{hw}, \mathrm{hw}), \\
\mathrm{G}(\mathrm{Sw}, \mathrm{ft}, \mathrm{ft}, \mathrm{G}(\mathrm{Tt}, \mathrm{ft}, \mathrm{ft}), \mathrm{G}(\mathrm{Rt}, \mathrm{gt}, \mathrm{gt}), \mathrm{G}(\mathrm{Sw}, \mathrm{Sw}, \mathrm{hw}))
\end{array}\right\}
$$

$=\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{hw})$.
On taking the limit as $\mathrm{n} \rightarrow \infty$ in (2.24), we obtain that
$\psi(\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{hw})) \leq \psi(\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{hw}))-\phi(\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{hw}))$,
which gives $\mathrm{hw}=\mathrm{t}$.
Since h and S are weakly compatible, we have $\mathrm{ht}=\mathrm{hSw}=\mathrm{Shw}=\mathrm{St}$.
Thus, t is a coincidence point of h and S . Now, we show that $\mathrm{ht}=\mathrm{t}$.
Since $\mathrm{x}_{3 \mathrm{n}} \leqslant \mathrm{fx}_{3 \mathrm{n}}$ and $\mathrm{fx}_{3 \mathrm{n}} \rightarrow \mathrm{t}$, as $\mathrm{n} \rightarrow \infty$, we have $\mathrm{X}_{3 \mathrm{n}} \leqslant \mathrm{t}$. Hence, from (2.1),

$$
\begin{equation*}
\psi\left(\mathrm{G}\left(\mathrm{fx}_{3 \mathrm{n}}, \mathrm{gt}, \mathrm{ht}\right)\right) \leq \psi\left(\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{t}, \mathrm{t}\right)\right)-\phi\left(\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{t}, \mathrm{t}\right)\right), \tag{2.25}
\end{equation*}
$$

where

$$
\mathrm{M}\left(\mathrm{x}_{3 \mathrm{n}}, \mathrm{t}, \mathrm{t}\right)=\max \left\{\begin{array}{c}
\mathrm{G}\left(\mathrm{Tx}_{3 \mathrm{n}}, \mathrm{Rt}, \mathrm{St}\right), \mathrm{G}(\mathrm{Rt}, \mathrm{St}, \mathrm{ht}), \mathrm{G}\left(\mathrm{Tx}_{3 \mathrm{n}}, \mathrm{gt}, \mathrm{gt}\right), \\
\mathrm{G}(\mathrm{Rt}, \mathrm{ht}, \mathrm{ht}), \mathrm{G}\left(\mathrm{St}, \mathrm{fx}_{3 \mathrm{n}}, \mathrm{fx}_{3 \mathrm{n}}\right), \mathrm{G}\left(\mathrm{Tx}_{3 \mathrm{n}}, \mathrm{fx}_{3 \mathrm{n}}, \mathrm{fx}_{3 \mathrm{n}}\right), \\
\mathrm{G}(\mathrm{Rt}, \mathrm{gt}, \mathrm{gt}), \mathrm{G}(\mathrm{St}, \mathrm{St}, \mathrm{ht})
\end{array}\right\}
$$

Taking $\mathrm{n} \rightarrow \infty$, in right hand side,

$$
M\left(x_{3 n}, t, t\right)=\max \left\{\begin{array}{c}
\mathrm{G}(\mathrm{t}, \mathrm{Rt}, \mathrm{St}), \mathrm{G}(\mathrm{Rt}, \mathrm{St}, \mathrm{ht}), \mathrm{G}(\mathrm{t}, \mathrm{gt}, \mathrm{gt}), \mathrm{G}(\mathrm{Rt}, \mathrm{ht}, \mathrm{ht}), \\
\mathrm{G}(\mathrm{St}, \mathrm{t}, \mathrm{t}), \mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{t}), \mathrm{G}(\mathrm{Rt}, \mathrm{gt}, \mathrm{gt}), \mathrm{G}(\mathrm{St}, \mathrm{St}, \mathrm{ht})
\end{array}\right\}
$$

$=G(t, t, h t)$.

Letting $n \rightarrow \infty$ in (2.25), we obtain that
$\psi(\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{ht})) \leq \psi(\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{ht}))-\phi(\mathrm{G}(\mathrm{t}, \mathrm{t}, \mathrm{ht}))$,
hence $\mathrm{ht}=\mathrm{t}$. Therefore, $\mathrm{ft}=\mathrm{gt}=\mathrm{ht}=\mathrm{Rt}=\mathrm{St}=\mathrm{Tt}=\mathrm{t}$.
Following the same arguments, the result is true when (ii) or (iii) of our Theorem holds.
We claim that common fixed point off, g, h, R, S and T is unique. Assume on contrary that $f p=g p$ $=\mathrm{hp}=\mathrm{Rp}=\mathrm{Sp}=\mathrm{Tp}=\mathrm{p}, \mathrm{fq}=\mathrm{gq}=\mathrm{hq}=\mathrm{Rq}=\mathrm{Sq}=\mathrm{Tq}=\mathrm{q}$ and $\mathrm{p} \neq \mathrm{q}$.
Using (2.1), we get
$\psi(\mathrm{G}(\mathrm{fp}, \mathrm{gq}, \mathrm{hq})) \leq \psi(\mathrm{M}(\mathrm{p}, \mathrm{q}, \mathrm{q}))-\phi(\mathrm{M}(\mathrm{p}, \mathrm{q}, \mathrm{q}))$
where

$$
M(p, q, q)=\max \left\{\begin{array}{c}
G(T p, R q, S q), G(R q, S q, h q), G(T p, g q, g q), G(R q, h q, h q), \\
G(S q, f p, f p), G(T p, f p, f p), G(R q, g q, g q), G(S q, S q, h q)
\end{array}\right\}
$$

$=G(p, q, q)$.
So,
$\psi(\mathrm{G}(\mathrm{p}, \mathrm{q}, \mathrm{q})) \leq \psi(\mathrm{G}(\mathrm{p}, \mathrm{q}, \mathrm{q}))-\phi(\mathrm{G}(\mathrm{p}, \mathrm{q}, \mathrm{q}))$.
Therefore, $\phi(\mathrm{G}(\mathrm{p}, \mathrm{q}, \mathrm{q}))=0$ which implies that $\mathrm{p}=\mathrm{q}$.

References

[1]. M. Abbas , T. Nazir and S. Radenovic, Common fixed points of four maps in partially ordered metric spaces, Appl. Math. Lett., 24(2011), p.1520-1526.
[2]. Ya. I. Alber and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, New results in operator theory, Advances and Appl. 98 (ed. By I. Gohberg and Yu Lyubich), BirkhauserVerlag, Basel, 1997.
[3]. B.C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Cal.Math. Soc., 84 (1992), p. 329-336.
[4]. G. Jungck, Compatible mappings and common fixed points, Int. J. Math.Math. Sci. Vol.,9 (1986), p. 771-779.
[5]. G. Jungck, Common fixed points for non-continuous non-self maps on nonmetric spaces, Far East J. Math. Sci.,4 (1996), p. 199-215.
[6]. M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30(1984), p. 1-9.
[7]. M . Kumar, Compatible Maps in G-Metric Spaces. Int. Journal of Math. Anal., 6(2012), p.1415-1421.
[8]. Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J.Nonlinear Convex Anal.,7 (2006), p. 289-297.
[9]. B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), p. 2683-2693.
[10]. Q. Zhang and Y. Song, Fixed point theory for generalized ϕ-weak contraction, Appl. Math. Lett., 22 (2009), p. 75-78.

